Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups

نویسندگان

  • Mihail Konstantinov
  • Petko Hr. Petkov
  • Nikolai D. Christov
چکیده

Subject of the present paper is the study and construction of complete independent invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups. Stable computational algorithms for finding the orthogonal canonical forms are presented and their numerical properties are discussed. In view of their nice numerical properties the orthogonal canonical forms are preferable for computations. They reveal the basic invariant structure of linear multivariable systems and provide the same theoretical advantages as the canonical forms relative to general transformation groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Forms, Canonical Forms, and Invariants of Single Input Nonlinear Systems Under Feedback

We study the feedback group action on single-input nonlinear control systems. We follow an approach of Kang and Krener based on analysing, step by step, the action of homogeneous transformations on the homogeneous part of the system. We construct a dual normal form and dual invariants with respect to those obtained by Kang. We also propose a canonical form and show that two systems are equivale...

متن کامل

A semi-canonical form for a class of right-invertible linear systems

Abstrati-We present a semi-canonical form for a class of right invertible systems under the action of the transformation group (T, F, G. II), where II is a permutation matrix acting on the outputs. Under certain additional conditions, this form is canonical. in particular when the system is nonsingular and controllable. 0 1997 Elsevier Science Ltd. All rights reserved. 1. Introduction The solut...

متن کامل

Signature submanifolds for some equivalence problems

This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.

متن کامل

تبدیلات دوگانگی آبلی استاندارد در گرانش f(T)

According to the perturbation order, the equations of motion of low-energy string effective action are the generalized Einstein equations. Thus, by making use of the conformal transformation of  the metric tensor, it is possible to map the low-energy string effective action into f(T) gravity, relating the dilaton field to the torsion scalar. Considering a homogeneous and isotropic universe and ...

متن کامل

Application of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries

In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kybernetika

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1981